
Physics 513, Quantum Field Theory
Homework 8

Due Tuesday, 11th November 2003

Jacob Lewis Bourjaily

Problem 4.1
We are to consider the problem of the creation of Klein Gordon particles by a classical source. This

process can be described by the Hamiltonian

H = Ho +
∫

d3x − j(x)φ(x),

where Ho is the Klein-Gordon Hamiltonian, φ(x) is the Klein-Gordon filed, and j(x) is a c-number scalar
function. Let us define the number λ by the relation

λ =
∫

d3p

(2π)3
1

2Ep
|j̃ (p)|2.

a) We are to show that the probability that the source creates no particles is given by

P (0) =
∣∣∣∣〈0|T

{
exp

[
i

∫
d4x j(x)φI(x)

]}
|0〉

∣∣∣∣
2

.

Without loss of understanding we will denote φ ≡ φI . Almost entirely trivially, we see that

HI = −
∫

d3x j(x)φ(x).

Therefore,

P (0) =
∣∣∣∣〈0|T

{
exp

[
−i

∫
dt′ HI(t′)

]}
|0〉

∣∣∣∣
2

,

=
∣∣∣∣〈0|T

{
exp

[
i

∫
d4x j(x)φ(x)

]}
|0〉

∣∣∣∣
2

.
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b) We are to evaluate the expression for P (0) to the order j2 and show generally that P (0) =
1− λ +O(λ2).

First, let us only consider the amplitude for the process. We can make the näıve expansion

〈0|T
{

exp
[
i

∫
d4x j(x)φ(x)

]}
|0〉 = 〈0|1|0〉+ i

∫
d4x j(x)〈0|φ(x)|0〉 − . . . .

For every odd power of the expansion, there will be at least one field φIo that cannot be contracted
from normal ordering and therefore will kill the entire term. So only even terms will contribute to
the expansion. It should be clear that the amplitude will be of the form ∼ 1−O(j2)+O(j4)−. . ..
Let us look at the O(j2) term. That term is given by

〈0|T
{
−½

(∫
d4x j(x)φ(x)

)2
}
|0〉 = −1

2

∫
d4xd4y j(x)j(y)〈0|T{φ(x)φ(y)}|0〉,

= −1
2

∫
d4xd4y j(x)j(y) DF (x− y),

= −1
2

∫
d4xd4y

∫
d4p

(2π)4
i

p2 −m2 + iε
e−ip(x−y)j(x)j(y),

= −1
2

∫
d4p

(2π)4

∫
d4x j(x)e−ipx

︸ ︷︷ ︸
j̃ (p)

∫
d4y j(y)eipy

︸ ︷︷ ︸
j̃ ∗(p)

i

p2 −m2 + iε
,

= −1
2

∫
d4p

(2π)4
|j̃ (p)|2 i

p2 −m2 + iε
,

= −1
2

∫
d3p

(2π)3

∫
dp0

(2π)
|j̃ (p)|2 i

p2 −m2 + iε
.

1
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We know how to evaluate the integral
∫

dp0

(2π)
|j̃ (p)|2 i

p2 −m2 + iε
=

∫
dp0

(2π)
|j̃ (p)|2 i

(p0)2 − E2
p + iε

,

=
∫

dp0

(2π)
|j̃ (p)|2 i

(p0 − Ep)(p0 + Ep)
.

The function has a simple pole at p0 = −Ep with the residue

i|j̃ (p)|2
p0 − Ep

∣∣∣∣
p0=−Ep

= − i|j̃ (p)|2
2Ep

.

We know from elementary complex analysis that the contour integral is 2πi times the residue at
the pole. Therefore,

−1
2

∫
d3p

(2π)3

∫
dp0

(2π)
|j̃ (p)|2 i

p2 −m2 + iε
= −1

2

∫
d3p

(2π)3
1

2Ep
|j̃ (p)|2,

= −1
2
λ.

Because we now know the amplitude to the first order of λ (or, rather, the second order of j),
we have shown, as desired, that

P (0) = |1− ½λ + . . . |2 ∼ 1− λ +O(λ2).
‘óπερ ’έδει δε�ιξαι

c) We must represent the term computed in part (b) as a Feynman diagram and show that the
whole perturbation series for P (0) in terms of Feynman diagrams is precisely P (0) = e−λ.

The term computed in part (b) can be represented by faf ≡ −λ. It has two points (neither
originated by the source) and a time direction specified (not to be confused with charge or
momentum). We can write the entire perturbation series as

P (0) =
∣∣∣∣〈0|T

{
exp

[
i

∫
d4x j(x)φ(x)

]}
|0〉

∣∣∣∣
2

=


1 +faf+ faffaf +

faffaffaf +

faffaffaffaf + · · ·




2

.

To get the series we must figure out the correct symmetry factors. If one begins with 2n
vertices, then n of them must be chosen as ‘in’; there are 22n/2 = 2n ways to do this. After that,
each one of the ‘in’ vertices must be paired with one of the ‘out’ vertices; you can do this n!
ways. So the symmetry factor for the term with n uninteracting propagators is

S(n) = 2n · n!.

We may now compute the probability explicitly.

P (0) =


1 +faf+

faffaf +
faffaffaf +

faffaffaffaf + · · ·




2

,

=

( ∞∑
n=0

(−λ)n

2nn!

)2

,

=

( ∞∑
n=0

(−λ/2)n

n!

)2

,

=
(
e−λ/2

)2

,

∴ P (0) = e−λ.
‘óπερ ’έδει δε�ιξαι
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d) Let us now compute the probability that the source creates one particle of momentum k. First
we should perform this computation to O(j) and then to all orders using the same trick as in
part (c) to sum the series.

Let us calculate the amplitude that a particle is created with the explicit momentum k.

〈0|T
{

φk exp
[
i

∫
d4x j(x)φ(x)

]}
|0〉

= i

∫
d4x j(x)〈0|ak

∫
d3p

(2π)3
1√
2Ep

(
ape−ipx + a†peipx

) |0〉|0〉,

= i

∫
d4x j(x)〈0|ak

∫
d3p

(2π)3
1√
2Ep

a†peipx|0〉,

= i

∫
d4x j(x)〈0|

∫
d3p

(2π)3
1√
2Ep

eipx(2π)3δ(3)(p− k)|0〉,

= i

∫
d4x

(2π)4
j(x)√
2Ek

eikx,

=
ij̃ (k)√

2Ek

.

Now, the probability of creating such a particle is the modulus of the amplitude.

P (1k) =
|j̃(x)|2
2Ek

.

We can compute the probability that a particle is created with any momentum by simply inte-
grating over all the possible k. This yields

P (1) =
∫

d3k

(2π)3
1

2Ek
|j̃ (x)|2 = λ.

Therefore in Feynman graphs, xfef ≡ i
√

λ. The entire perturbation in Feynman diagrams is
therefore

P (1) =


xfef×


1 +faf+

faffaf +
faffaffaf +

faffaffaffaf + · · ·







2

,

=
∣∣∣i
√

λeλ/2
∣∣∣
2

,

∴ P (1) = λe−λ.

e) We are to show that the probability of producing n particles is given by a Poisson distribution.
From part (d) above, we know that each creation vertex on the Feynman diagram must be

multiplied by i
√

λ. Now, because each of the final products are identical and there are n! ways
of arranging them, the symmetry factor in each case is n!. The probability is approximated by

P (n) ∼ λn

n!
.

Like we have done before, to get the correct probability, we must take into account the probability
that no particle is created. Therefore,

P (n) =
λne−λ

n!
.

f) We must show that a poisson distribution given above with parameter λ has a norm of 1, an
expectation value of λ, and a variance of λ.
First, let us compute the norm of the distribution function.

∞∑
n=0

λn

n!
eλ = e−λ

∞∑
n=0

λn

n!
= e−λeλ = 1.
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The expectation value for the number created is simply,

E(n) =
∞∑

n=0

nλn

n!
e−λ = λe−λ

∞∑
n=1

λn−1

(n− 1)!
= λe−λ

∞∑
m=0

λm

m!
= λe−λeλ = λ.

To compute the variance, we will use the relation V ar(n) = E(n2) − E(n)2. Let us compute
E(n2).

E(n2) =
∞∑

k=0

n2 λn

n!
e−λ,

= λe−λ
∞∑

n=1

n
λn−1

(n− 1)!
,

= λe−λ
∞∑

n=1

((n− 1) + 1)
λn−1

(n− 1)!
,

= λe−λ

[ ∞∑
n=1

(n− 1)
λn−1

(n− 1)!
+

∞∑
n=1

λn−1

(n− 1)!

]
,

= λe−λeλ + λe−λ
∞∑

n=1

λn−1

(n− 2)!
,

= λ+λ2e−λ
∞∑

n=2

λn−2

(n− 2)!
,

= λ2 + λ.

Knowing this, it is clear that

V ar(n) = λ2 + λ− λ = λ.

Problem 4.4
The cross section for scattering of an electron by the Coulomb field of a nucleus can be computed, to

lowest order, without quantizing the electromagnetic field. We will treat the field as a given. classical
potential Aµ(x). The interaction Hamiltonian is then

HI =
∫

d3x eψ̄γµψAµ,

where ψ(x) is the usual quantized Dirac field.

a) We must show that the T -matrix element for an electron scatter to off a localized classical
potential is given to the lowest order by

〈pf |iT |pi〉 = −ieū(pf )γµu(pi) · Ãµ(pf − pi).

where Ãµ is the Fourier transform of Aµ.
We may compute this contribution directly.

〈pf |iT |p〉 = −i

∫
d4x〈pf |T{HI(x)}|pi〉,

= −ie

∫
d4x Aµ〈pf |T{ψ̄(x)γµψ(x)}|pi〉,

= −ie

∫
d4x Aµ〈pf |ψ(x)γµψ(x)|pi〉,

= −ie

∫
d4x Aµ(x)us′(pf )γµus(pi)eix(pf−pi),

= −ieus′(pf )γµus(pi)
∫

d4x Aµ(x)eix(pf−pi),

= −ieus′(pf )γµus(pi)Ãµ(pf − pi).
‘óπερ ’έδει δε�ιξαι
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b) If Aµ(x) is time independent, its Fourier transform contains a delta function of energy. We
therefore define

〈pf |iT |pi〉 ≡ iM· (2π)δ(Ef − Ei).
Given this definition of M, we must show that the cross section for scattering off a time-
independent localized potential is given by

dσ =
1
vi

1
2Ei

d3pf

(2π)3
1

2Ef
(2π)δ(Ef − Ei)|M(pi → pf )|2.

From class we know that we can represent an incoming wave packet with momentum pi in
the z-direction and impact parameter b by the relation

|ψb〉 =
∫

d3pi

(2π)3
1√
2Epi

e−ibpiψ(pi)|pi〉.

The probability of interaction given an impact parameter is then

P (b) =
d3pf

(2π)3
1

2Ef
|〈pf |iT |ψb〉|2,

=
d3pf

(2π)3
1

2Ef

∫
d3pid

3k

(2π)6
1√

2Epi
2Ek

e−ib(pi−k)ψ(pi)ψ∗(k)〈pf |iT |pi〉〈pf |iT |k〉∗,

=
d3pf

(2π)3
1

2Ef

∫
d3pid

3k

(2π)6
e−ib(pi−k)

√
2Epi2Ek

ψ(pi)ψ∗(k)(2π)2δ(Ef − Epi)δ(Ef − Ek)M(pi → pf )M(k → pf )∗.

Therefore,

dσ =
∫

d2b P (b),

=
d3pf

(2π)3
1

2Ef

∫
d2b

d3pd3k

(2π)6
e−ib(p−k)

√
2Ep2Ek

ψ(p)ψ∗(k)(2π)2δ(Ef − Ep)δ(Ef − Ek)M(p → pf )M(k → pf )∗,

=
d3pf

(2π)3
1

2Ef

∫
d3pd3k

(2π)6
ψ(p)ψ∗(k)√

2Ep2Ek

(2π)2δ(2)(p⊥ − k⊥)δ(Ef − Ep)δ(Ef − Ek)M(p → pf )M(k → pf )∗,

=
d3pf

(2π)3
1

2Ef

1
|vi| (2π)

∫
d3pd3k

(2π)3
ψ(p)ψ∗(k)√

2Ep2Ek

δ(2)(p⊥ − k⊥)δ(pz − kz)δ(Ef − Ep)M(p → pf )M(k → pf )∗,

=
d3pf

(2π)3
1

2Ef

1
|vi| (2π)

∫
d3p

(2π)3
1

2Ep
|ψ(p)|2δ(Ef − Ep)|M(p → pf )|2,

With a properly normalized wave function, this reduces directly to (allow me to apologize for
the inconsistency with notation. It is hard to keep track of. The incoming momentum p has
energy Ei.)

dσ =
1
vi

1
2Ei

d3pf

(2π)3
1

2Ef
(2π)δ(Ef − Ei)|M(pi → pf )|2.

‘óπερ ’έδει δε�ιξαι

Now, let us try to write an expression for dσ/dΩ.
∫

dσ =
∫

d3pf

(2π)3
1
vi

1
2Ei

1
2Ef

(2π)δ(Ef − Ei)|M|2,

=
∫

p2
fdpfdΩ
(2π)2

1
vi

1
2Ef2Ei

1
vf

δ(p′ − p)|M|2,

=
∫

dΩ
(2π)2

p2

4v2
i E2

i

|M|2,

=
∫

dΩ
1

16π2
|M|2.

Therefore, we have that
dσ

dΩ
=

1
16π2

|M|2.
‘óπερ ’έδει δε�ιξαι
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c) We will now specialize to the non-relativistic scattering of a Coulomb potential (A0 = Ze/4πr).
We must show that in this limit

dσ

dΩ
=

α2Z2

4m2v4 sin4(θ/2)
.

Let us first take the Fourier transform of the Coulomb potential.

Ãµ(k) =
Ze

4π

∫
d3r

eikr

r
,

=
Ze

4π

4π

k2
,

∴ Ãµ(k) =
Ze

k2
.

From part (a) above, we calculated that

M = −ieus′(pf )γµus(p)Ãµ(pf − p),

=
−ie2Z

(pf − p)2
us′(pf )γ0us(p).

In the nonrelativistic limit, E >> p so we may approximate that

us′(pf )γ0us(p) = us′†(pf )us(p) = 2Eδs′s.

Therefore, our amplitude becomes

M =
−ie2Z

(pf − p)2
2Eδs′s.

From part (b), we may compute dσ/dΩ directly.

dσ

dΩ
=

4Z2e4E62
16π2(pf − p)4

,

=
Z2α2E2

p4(1− cosθ)2
,

=
Z2α2E2

4p4 sin4(θ/2)
,

=
Z2α2

4E2v4 sin4(θ/2)
.

In the nonrelativistic limit, we have that E2 ∼ m2. Therefore we may conclude as desired that

dσ

dΩ
=

α2Z2

4m2v4 sin4(θ/2)
.

‘óπερ ’έδει δε�ιξαι


